|

|  How to Implement Azure Cognitive Services Text Analytics API in Java

How to Implement Azure Cognitive Services Text Analytics API in Java

October 31, 2024

Explore a step-by-step Java guide to integrating Azure Cognitive Services Text Analytics API, enhancing app capabilities with language processing features.

How to Implement Azure Cognitive Services Text Analytics API in Java

 

Integrate Azure Cognitive Services Text Analytics API in Java

 

  • First, ensure you have included the necessary dependencies in your project. The Azure Cognitive Services Text Analytics library should be added using Maven or Gradle.
  •  

  • For Maven projects, add the dependency to your `pom.xml`:
    <dependency>
        <groupId>com.azure</groupId>
        <artifactId>azure-ai-textanalytics</artifactId>
        <version>5.2.0</version>
    </dependency>
    
  •  

  • For Gradle projects, add this to your `build.gradle`:
    implementation 'com.azure:azure-ai-textanalytics:5.2.0'
    

 

Setup Authentication

 

  • You'll need to authenticate with the Azure Text Analytics service using an API key. Here's how to set it up:
  •  

  • Set up your `TextAnalyticsClient` using the `TextAnalyticsClientBuilder` and your API key:
    import com.azure.ai.textanalytics.*;
    import com.azure.core.credential.AzureKeyCredential;
    
    public class TextAnalyticsExample {
        public static void main(String[] args) {
            String endpoint = "https://<your-text-analytics-resource>.cognitiveservices.azure.com/";
            String apiKey = "<your-api-key>";
    
            TextAnalyticsClient client = new TextAnalyticsClientBuilder()
                .credential(new AzureKeyCredential(apiKey))
                .endpoint(endpoint)
                .buildClient();
        }
    }
    

 

Perform Text Analysis

 

  • Now that the client is set up, you can perform various text analysis operations such as sentiment analysis, named entity recognition, and more.
  •  

  • Here’s an example to determine the sentiment of a given text:
    import com.azure.ai.textanalytics.models.DocumentSentiment;
    
    public class SentimentAnalysisExample {
        public static void main(String[] args) {
            // Assume client is initialized as shown earlier
            
            String text = "The hotel was clean and the staff was friendly.";
    
            DocumentSentiment documentSentiment = client.analyzeSentiment(text);
            System.out.printf("Document sentiment: %s%n", documentSentiment.getSentiment());
            documentSentiment.getSentences().forEach(sentenceSentiment ->
                System.out.printf("Sentence sentiment: %s%n", sentenceSentiment.getSentiment()));
        }
    }
    

 

Handle Exceptions and Errors

 

  • Implement error handling to manage potential issues like network errors or invalid input data.
  •  

  • Use try-catch blocks to capture and respond to `TextAnalyticsException` or any other runtime exceptions:
    import com.azure.ai.textanalytics.models.TextAnalyticsException;
    
    public class SafeTextAnalyticsExample {
        public static void main(String[] args) {
            try {
                // Assume client and text are already initialized
                
                client.analyzeSentiment(text);
            } catch (TextAnalyticsException e) {
                System.out.printf("Error Message: %s%n", e.getMessage());
                System.out.printf("Error Code: %s%n", e.getErrorCode());
            } catch (Exception e) {
                System.out.println("Unexpected error occurred: " + e);
            }
        }
    }
    

 

Optimize for Production

 

  • In a production environment, you should use Azure identity management for better security instead of just relying on API keys.
  •  

  • Monitor the performance and handle batch requests for large-scale applications to maintain efficiency and adhere to API rate limits.

 

import com.azure.identity.DefaultAzureCredentialBuilder;

// Example of setting up client with managed identity
public class ManagedIdentityClientExample {
    public static void main(String[] args) {
        TextAnalyticsClient client = new TextAnalyticsClientBuilder()
            .credential(new DefaultAzureCredentialBuilder().build())
            .endpoint("https://<your-text-analytics-resource>.cognitiveservices.azure.com/")
            .buildClient();
    }
}

 

Limited Beta: Claim Your Dev Kit and Start Building Today

Instant transcription

Access hundreds of community apps

Sync seamlessly on iOS & Android

Order Now

Turn Ideas Into Apps & Earn Big

Build apps for the AI wearable revolution, tap into a $100K+ bounty pool, and get noticed by top companies. Whether for fun or productivity, create unique use cases, integrate with real-time transcription, and join a thriving dev community.

Get Developer Kit Now

OMI AI PLATFORM
Remember Every Moment,
Talk to AI and Get Feedback

Omi Necklace

The #1 Open Source AI necklace: Experiment with how you capture and manage conversations.

Build and test with your own Omi Dev Kit 2.

Omi App

Fully Open-Source AI wearable app: build and use reminders, meeting summaries, task suggestions and more. All in one simple app.

Github →

Join the #1 open-source AI wearable community

Build faster and better with 3900+ community members on Omi Discord

Participate in hackathons to expand the Omi platform and win prizes

Participate in hackathons to expand the Omi platform and win prizes

Get cash bounties, free Omi devices and priority access by taking part in community activities

Join our Discord → 

OMI NECKLACE + OMI APP
First & only open-source AI wearable platform

a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded
a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded
online meeting with AI Wearable, showcasing how it works and helps online meeting with AI Wearable, showcasing how it works and helps
online meeting with AI Wearable, showcasing how it works and helps online meeting with AI Wearable, showcasing how it works and helps
App for Friend AI Necklace, showing notes and topics AI Necklace recorded App for Friend AI Necklace, showing notes and topics AI Necklace recorded
App for Friend AI Necklace, showing notes and topics AI Necklace recorded App for Friend AI Necklace, showing notes and topics AI Necklace recorded

OMI NECKLACE: DEV KIT
Order your Omi Dev Kit 2 now and create your use cases

Omi 開発キット 2

無限のカスタマイズ

OMI 開発キット 2

$69.99

Omi AIネックレスで会話を音声化、文字起こし、要約。アクションリストやパーソナライズされたフィードバックを提供し、あなたの第二の脳となって考えや感情を語り合います。iOSとAndroidでご利用いただけます。

  • リアルタイムの会話の書き起こしと処理。
  • 行動項目、要約、思い出
  • Omi ペルソナと会話を活用できる何千ものコミュニティ アプリ

もっと詳しく知る

Omi Dev Kit 2: 新しいレベルのビルド

主な仕様

OMI 開発キット

OMI 開発キット 2

マイクロフォン

はい

はい

バッテリー

4日間(250mAH)

2日間(250mAH)

オンボードメモリ(携帯電話なしで動作)

いいえ

はい

スピーカー

いいえ

はい

プログラム可能なボタン

いいえ

はい

配送予定日

-

1週間

人々が言うこと

「記憶を助ける、

コミュニケーション

ビジネス/人生のパートナーと、

アイデアを捉え、解決する

聴覚チャレンジ」

ネイサン・サッズ

「このデバイスがあればいいのに

去年の夏

記録する

「会話」

クリスY.

「ADHDを治して

私を助けてくれた

整頓された。"

デビッド・ナイ

OMIネックレス:開発キット
脳を次のレベルへ

最新ニュース
フォローして最新情報をいち早く入手しましょう

最新ニュース
フォローして最新情報をいち早く入手しましょう

thought to action.

Based Hardware Inc.
81 Lafayette St, San Francisco, CA 94103
team@basedhardware.com / help@omi.me

Company

Careers

Invest

Privacy

Events

Manifesto

Compliance

Products

Omi

Wrist Band

Omi Apps

omi Dev Kit

omiGPT

Personas

Omi Glass

Resources

Apps

Bounties

Affiliate

Docs

GitHub

Help Center

Feedback

Enterprise

Ambassadors

Resellers

© 2025 Based Hardware. All rights reserved.