|

|  How to Implement Google Cloud Vision API for Image Recognition in Java

How to Implement Google Cloud Vision API for Image Recognition in Java

October 31, 2024

Implement Google Cloud Vision API for image recognition in Java with our step-by-step guide. Learn setup, code samples, and best practices in one place.

How to Implement Google Cloud Vision API for Image Recognition in Java

 

Set Up Google Cloud Vision Client

 

  • Create a new Java project in your preferred IDE (such as IntelliJ IDEA or Eclipse).
  •  

  • Ensure you have added the Google Client Library for Java to your project dependencies. If you are using Maven, include the following in your `pom.xml`:

 

<dependency>
  <groupId>com.google.cloud</groupId>
  <artifactId>google-cloud-vision</artifactId>
  <version>2.3.3</version> <!-- Use the latest version available -->
</dependency>

 

Authenticate API Requests

 

  • Download the JSON key file for your Google Cloud project from the Google Cloud Console. This key is essential for authenticating your requests.
  •  

  • Set the environment variable `GOOGLE_APPLICATION_CREDENTIALS` to the file path of the downloaded JSON key file. This allows Google Cloud libraries to authenticate API requests automatically.

 

export GOOGLE_APPLICATION_CREDENTIALS="/path/to/your-service-account-file.json"

 

Initialize Vision Client

 

  • Initialize the Vision client in your Java application. This setup allows the application to interact with the Google Cloud Vision API.

 

import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageAnnotatorSettings;
import java.io.IOException;

public class VisionApiExample {

    public static ImageAnnotatorClient initializeVisionClient() throws IOException {
        ImageAnnotatorSettings imageAnnotatorSettings =
                ImageAnnotatorSettings.newBuilder().build();
        return ImageAnnotatorClient.create(imageAnnotatorSettings);
    }
}

 

Load and Prepare the Image

 

  • Load the image you need to analyze. You can load an image from local storage or use a remote image URL.
  •  

  • Convert the loaded image into a format that the Vision API can process using the `Image` class.

 

import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageSource;
import com.google.protobuf.ByteString;

import java.nio.file.Files;
import java.nio.file.Paths;
import java.io.IOException;

public Image prepareImage(String filePath) throws IOException {
    ByteString imgBytes = ByteString.readFrom(Files.newInputStream(Paths.get(filePath)));

    return Image.newBuilder().setContent(imgBytes).build();
}

 

Perform Image Recognition

 

  • Use the Vision client to perform image recognition by sending a request to the API with your prepared image.
  •  

  • Specify the type of analysis you require, such as label detection, text detection, face detection, etc.

 

import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Feature.Type;
import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;

import java.util.ArrayList;
import java.util.List;

public void detectLabels(String filePath) throws IOException {
    try (ImageAnnotatorClient vision = initializeVisionClient()) {
        List<AnnotateImageRequest> requests = new ArrayList<>();
        Image img = prepareImage(filePath);

        Feature feat = Feature.newBuilder().setType(Type.LABEL_DETECTION).build();
        AnnotateImageRequest request =
                AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
        requests.add(request);

        AnnotateImageResponse response = vision.batchAnnotateImages(requests).getResponsesList().get(0);

        if (response.hasError()) {
            System.out.printf("Error: %s\n", response.getError().getMessage());
            return;
        }

        response.getLabelAnnotationsList().forEach(label -> 
            System.out.printf("Label: %s\n", label.getDescription())
        );
    }
}

 

Handle API Response

 

  • Process the API response to extract the information you need, such as detected labels, text, or landmarks.
  •  

  • Add appropriate error handling for robustness, ensuring your application can gracefully manage API response errors or service outages.

 

import com.google.cloud.vision.v1.EntityAnnotation;

public void printDetectedLabels(List<EntityAnnotation> labels) {
    if (labels != null && !labels.isEmpty()) {
        for (EntityAnnotation label : labels) {
            System.out.printf("Label: %s | Confidence: %.2f%% \n", 
                              label.getDescription(), label.getScore() * 100.0);
        }
    } else {
        System.out.println("No labels detected.");
    }
}

 

Optimize and Scale

 

  • Consider setting up batching of requests if you need to process a large number of images to improve efficiency and reduce API calls overhead.
  •  

  • Implement proper logging and monitoring to keep track of API usage and error rates, which helps in maintaining and scaling the application when processing large sets of images.
  •  

  • Explore additional features of the Vision API such as detecting document text, logos, landmarks, and more to enhance your application's image recognition capabilities.

 

Limited Beta: Claim Your Dev Kit and Start Building Today

Instant transcription

Access hundreds of community apps

Sync seamlessly on iOS & Android

Order Now

Turn Ideas Into Apps & Earn Big

Build apps for the AI wearable revolution, tap into a $100K+ bounty pool, and get noticed by top companies. Whether for fun or productivity, create unique use cases, integrate with real-time transcription, and join a thriving dev community.

Get Developer Kit Now

OMI AI PLATFORM
Remember Every Moment,
Talk to AI and Get Feedback

Omi Necklace

The #1 Open Source AI necklace: Experiment with how you capture and manage conversations.

Build and test with your own Omi Dev Kit 2.

Omi App

Fully Open-Source AI wearable app: build and use reminders, meeting summaries, task suggestions and more. All in one simple app.

Github →

Join the #1 open-source AI wearable community

Build faster and better with 3900+ community members on Omi Discord

Participate in hackathons to expand the Omi platform and win prizes

Participate in hackathons to expand the Omi platform and win prizes

Get cash bounties, free Omi devices and priority access by taking part in community activities

Join our Discord → 

OMI NECKLACE + OMI APP
First & only open-source AI wearable platform

a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded
a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded
online meeting with AI Wearable, showcasing how it works and helps online meeting with AI Wearable, showcasing how it works and helps
online meeting with AI Wearable, showcasing how it works and helps online meeting with AI Wearable, showcasing how it works and helps
App for Friend AI Necklace, showing notes and topics AI Necklace recorded App for Friend AI Necklace, showing notes and topics AI Necklace recorded
App for Friend AI Necklace, showing notes and topics AI Necklace recorded App for Friend AI Necklace, showing notes and topics AI Necklace recorded

OMI NECKLACE: DEV KIT
Order your Omi Dev Kit 2 now and create your use cases

Omi 開発キット 2

無限のカスタマイズ

OMI 開発キット 2

$69.99

Omi AIネックレスで会話を音声化、文字起こし、要約。アクションリストやパーソナライズされたフィードバックを提供し、あなたの第二の脳となって考えや感情を語り合います。iOSとAndroidでご利用いただけます。

  • リアルタイムの会話の書き起こしと処理。
  • 行動項目、要約、思い出
  • Omi ペルソナと会話を活用できる何千ものコミュニティ アプリ

もっと詳しく知る

Omi Dev Kit 2: 新しいレベルのビルド

主な仕様

OMI 開発キット

OMI 開発キット 2

マイクロフォン

はい

はい

バッテリー

4日間(250mAH)

2日間(250mAH)

オンボードメモリ(携帯電話なしで動作)

いいえ

はい

スピーカー

いいえ

はい

プログラム可能なボタン

いいえ

はい

配送予定日

-

1週間

人々が言うこと

「記憶を助ける、

コミュニケーション

ビジネス/人生のパートナーと、

アイデアを捉え、解決する

聴覚チャレンジ」

ネイサン・サッズ

「このデバイスがあればいいのに

去年の夏

記録する

「会話」

クリスY.

「ADHDを治して

私を助けてくれた

整頓された。"

デビッド・ナイ

OMIネックレス:開発キット
脳を次のレベルへ

最新ニュース
フォローして最新情報をいち早く入手しましょう

最新ニュース
フォローして最新情報をいち早く入手しましょう

thought to action.

Based Hardware Inc.
81 Lafayette St, San Francisco, CA 94103
team@basedhardware.com / help@omi.me

Company

Careers

Invest

Privacy

Events

Manifesto

Compliance

Products

Omi

Wrist Band

Omi Apps

omi Dev Kit

omiGPT

Personas

Omi Glass

Resources

Apps

Bounties

Affiliate

Docs

GitHub

Help Center

Feedback

Enterprise

Ambassadors

Resellers

© 2025 Based Hardware. All rights reserved.