|

|  How to Implement Microsoft Azure Cognitive Services Video Indexer API in C#

How to Implement Microsoft Azure Cognitive Services Video Indexer API in C#

October 31, 2024

Learn to seamlessly integrate Azure Video Indexer API in C# with our step-by-step guide, perfect for boosting your application’s video processing capabilities.

How to Implement Microsoft Azure Cognitive Services Video Indexer API in C#

 

Prerequisites

 

  • Make sure you have your Azure Video Indexer account API key and locate your account ID, location, and videos URL. You'll need these for authentication and accessing the API.

 

Integrate Azure Cognitive Services Video Indexer SDK

 

  • Start by adding the necessary NuGet packages for accessing the Azure Video Indexer API. Use NuGet package manager or the package manager console to install:
  •  

    Install-Package Azure.Media.VideoAnalyzer.Edge
    

     

  • This package consists of tools for interacting with video analytics and processing video content through Azure.

 

Set Up Authentication

 

  • To authenticate and access the Video Indexer API, use Azure Active Directory Bearer Token. Here’s a sample function to get the token:
  •  

    using System.Net.Http;
    using System.Text;
    using System.Threading.Tasks;
    using Newtonsoft.Json;
    using Newtonsoft.Json.Linq;
    
    public static async Task<string> GetAccessTokenAsync(string clientId, string clientSecret, string tenantId)
    {
        HttpClient client = new HttpClient();
        var url = $"https://login.microsoftonline.com/{tenantId}/oauth2/token";
    
        var content = new StringContent($"grant_type=client_credentials&client_id={clientId}&client_secret={clientSecret}&resource=https://management.azure.com/",
                                        Encoding.UTF8, "application/x-www-form-urlencoded");
    
        var response = await client.PostAsync(url, content);
        response.EnsureSuccessStatusCode();
    
        var payload = JObject.Parse(await response.Content.ReadAsStringAsync());
        return payload["access_token"].ToString();
    }
    

     

 

Invoke Video Indexer Operations

 

  • Set up a method to upload video for analysis. First, set base URL and authentication headers:
  •  

    using System;
    using System.IO;
    using System.Net.Http.Headers;
    
    public static async Task<string> UploadVideoAsync(string accessToken, string accountId, string location, string videoFilePath)
    {
        HttpClient client = new HttpClient();
        client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", accessToken);
    
        // API url to upload video
        var url = $"https://{location}.api.videoindexer.ai/{location}/Accounts/{accountId}/Videos?name={Path.GetFileNameWithoutExtension(videoFilePath)}";
    
        byte[] videoData = File.ReadAllBytes(videoFilePath);
        ByteArrayContent content = new ByteArrayContent(videoData);
        content.Headers.ContentType = new MediaTypeHeaderValue("application/octet-stream");
    
        var response = await client.PostAsync(url, content);
        response.EnsureSuccessStatusCode();
    
        return await response.Content.ReadAsStringAsync();
    }
    

     

  • Here, replace the placeholders with your account specific data. The method returns the response from the Video Indexer API.

 

Handle Video Analysis Results

 

  • Once the video is indexed, retrieve the analysis results like transcripts, insights, etc.
  •  

    public static async Task<string> GetVideoInsightsAsync(string accessToken, string accountId, string location, string videoId)
    {
        HttpClient client = new HttpClient();
        client.DefaultRequestHeaders.Authorization = new AuthenticationHeaderValue("Bearer", accessToken);
    
        var url = $"https://{location}.api.videoindexer.ai/{location}/Accounts/{accountId}/Videos/{videoId}/Index";
    
        var response = await client.GetAsync(url);
        response.EnsureSuccessStatusCode();
    
        return await response.Content.ReadAsStringAsync();
    }
    

     

  • This method fetches insights using the video ID obtained from the upload response. Deserialize the JSON response to work with insights in your application.

 

Best Practices and Considerations

 

  • Ensure that authentication and access token management are securely handled.
  •  

  • You'll likely want to retry failed API requests, particularly ones involving network calls, to handle transient issues gracefully.
  •  

  • Consider implementing logging for both successful and unsuccessful API interactions to maintain a robust integration and debugging capability.

 

Limited Beta: Claim Your Dev Kit and Start Building Today

Instant transcription

Access hundreds of community apps

Sync seamlessly on iOS & Android

Order Now

Turn Ideas Into Apps & Earn Big

Build apps for the AI wearable revolution, tap into a $100K+ bounty pool, and get noticed by top companies. Whether for fun or productivity, create unique use cases, integrate with real-time transcription, and join a thriving dev community.

Get Developer Kit Now

OMI AI PLATFORM
Remember Every Moment,
Talk to AI and Get Feedback

Omi Necklace

The #1 Open Source AI necklace: Experiment with how you capture and manage conversations.

Build and test with your own Omi Dev Kit 2.

Omi App

Fully Open-Source AI wearable app: build and use reminders, meeting summaries, task suggestions and more. All in one simple app.

Github →

Join the #1 open-source AI wearable community

Build faster and better with 3900+ community members on Omi Discord

Participate in hackathons to expand the Omi platform and win prizes

Participate in hackathons to expand the Omi platform and win prizes

Get cash bounties, free Omi devices and priority access by taking part in community activities

Join our Discord → 

OMI NECKLACE + OMI APP
First & only open-source AI wearable platform

a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded
a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded
online meeting with AI Wearable, showcasing how it works and helps online meeting with AI Wearable, showcasing how it works and helps
online meeting with AI Wearable, showcasing how it works and helps online meeting with AI Wearable, showcasing how it works and helps
App for Friend AI Necklace, showing notes and topics AI Necklace recorded App for Friend AI Necklace, showing notes and topics AI Necklace recorded
App for Friend AI Necklace, showing notes and topics AI Necklace recorded App for Friend AI Necklace, showing notes and topics AI Necklace recorded

OMI NECKLACE: DEV KIT
Order your Omi Dev Kit 2 now and create your use cases

Omi 開発キット 2

無限のカスタマイズ

OMI 開発キット 2

$69.99

Omi AIネックレスで会話を音声化、文字起こし、要約。アクションリストやパーソナライズされたフィードバックを提供し、あなたの第二の脳となって考えや感情を語り合います。iOSとAndroidでご利用いただけます。

  • リアルタイムの会話の書き起こしと処理。
  • 行動項目、要約、思い出
  • Omi ペルソナと会話を活用できる何千ものコミュニティ アプリ

もっと詳しく知る

Omi Dev Kit 2: 新しいレベルのビルド

主な仕様

OMI 開発キット

OMI 開発キット 2

マイクロフォン

はい

はい

バッテリー

4日間(250mAH)

2日間(250mAH)

オンボードメモリ(携帯電話なしで動作)

いいえ

はい

スピーカー

いいえ

はい

プログラム可能なボタン

いいえ

はい

配送予定日

-

1週間

人々が言うこと

「記憶を助ける、

コミュニケーション

ビジネス/人生のパートナーと、

アイデアを捉え、解決する

聴覚チャレンジ」

ネイサン・サッズ

「このデバイスがあればいいのに

去年の夏

記録する

「会話」

クリスY.

「ADHDを治して

私を助けてくれた

整頓された。"

デビッド・ナイ

OMIネックレス:開発キット
脳を次のレベルへ

最新ニュース
フォローして最新情報をいち早く入手しましょう

最新ニュース
フォローして最新情報をいち早く入手しましょう

thought to action.

Based Hardware Inc.
81 Lafayette St, San Francisco, CA 94103
team@basedhardware.com / help@omi.me

Company

Careers

Invest

Privacy

Events

Manifesto

Compliance

Products

Omi

Wrist Band

Omi Apps

omi Dev Kit

omiGPT

Personas

Omi Glass

Resources

Apps

Bounties

Affiliate

Docs

GitHub

Help Center

Feedback

Enterprise

Ambassadors

Resellers

© 2025 Based Hardware. All rights reserved.