|

|  How to Use Microsoft Azure Face API for Facial Recognition in C#

How to Use Microsoft Azure Face API for Facial Recognition in C#

October 31, 2024

Learn how to implement Microsoft Azure Face API in C# for facial recognition. Step-by-step guide for seamless integration and efficient facial analysis.

How to Use Microsoft Azure Face API for Facial Recognition in C#

 

Configure Azure Face API Client

 

To leverage the Azure Face API in C#, your initial step will involve configuring the Face API client. Create a new Console project or use an existing one, and include the Azure Face SDK. To do so, you will need to install the necessary NuGet package.

 


dotnet add package Microsoft.Azure.CognitiveServices.Vision.Face

 

Import the required namespaces in your application.

 


using Microsoft.Azure.CognitiveServices.Vision.Face;
using Microsoft.Azure.CognitiveServices.Vision.Face.Models;

 

Initialize FaceClient

 

Once the package is installed, you need to initialize the FaceClient. This involves setting up the API key and endpoint that you've received from the Azure portal. These credentials are essential to authenticate any requests you make to the API.

 


var client = new FaceClient(new ApiKeyServiceClientCredentials("YOUR_API_KEY"))
{
    Endpoint = "YOUR_FACE_API_ENDPOINT"
};

 

Detect Faces in an Image

 

The Face API offers functionality to detect faces within an image. You will start by calling the DetectWithStreamAsync or DetectWithUrlAsync method, depending on whether your source image is local or online.

 


using (var stream = File.OpenRead("path_to_your_local_image.jpg"))
{
    var detectedFaces = await client.Face.DetectWithStreamAsync(
        stream,
        returnFaceAttributes: new List<FaceAttributeType> { FaceAttributeType.Age, FaceAttributeType.Gender },
        recognitionModel: RecognitionModel.Recognition03
    );

    foreach (var face in detectedFaces)
    {
        Console.WriteLine($"Detected face attributes: Age - {face.FaceAttributes.Age}, Gender - {face.FaceAttributes.Gender}");
    }
}

 

Identify Faces with Person Group

 

Recognition of faces involves training it against a known group of individuals (a person group). Before invoking the recognition service, you should create a person group, register individuals, and persist facial data.

 


await client.PersonGroup.CreateAsync(personGroupId: "myfriends", name: "My Friends");

var person = await client.PersonGroupPerson.CreateAsync("myfriends", "John Doe");

// Assuming you have multiple images for this person, add all images to the person group.
await client.PersonGroupPerson.AddFaceFromStreamAsync("myfriends", person.PersonId, File.OpenRead("john_doe_image1.jpg"));

await client.PersonGroup.TrainAsync("myfriends");

Remember, training a person group can take time, so be sure to only do this step when you've added all faces.

 

Recognize Detected Faces from a Person Group

 

To recognize or identify who appears in an image, leverage the IdentifyAsync method on the FaceClient.

 


var identifyResults = await client.Face.IdentifyAsync(
    faceIds: detectedFaces.Select(face => face.FaceId.Value).ToList(),
    personGroupId: "myfriends"
);

foreach (var result in identifyResults)
{
    if (result.Candidates.Any())
    {
        var candidateId = result.Candidates[0].PersonId;
        var person = await client.PersonGroupPerson.GetAsync("myfriends", candidateId);
        Console.WriteLine($"Person identified as {person.Name}");
    }
}

 

Handle Rate Limits and Errors

 

In case your app sends too many requests in a short period, you may hit rate limits imposed by Azure. Implement error handling to manage these errors gracefully and include retry logic where possible. Utilize try-catch blocks around your API calls.

 


try
{
    // Operations that may cause exceptions
}
catch (APIErrorException e)
{
    Console.WriteLine($"API error: {e.Message}");
}
catch (Exception ex)
{
    Console.WriteLine($"General error: {ex.Message}");
}

 

With these steps, you can effectively integrate and utilize Microsoft Azure's Face API within your C# projects, enabling powerful facial recognition capabilities.

Limited Beta: Claim Your Dev Kit and Start Building Today

Instant transcription

Access hundreds of community apps

Sync seamlessly on iOS & Android

Order Now

Turn Ideas Into Apps & Earn Big

Build apps for the AI wearable revolution, tap into a $100K+ bounty pool, and get noticed by top companies. Whether for fun or productivity, create unique use cases, integrate with real-time transcription, and join a thriving dev community.

Get Developer Kit Now

OMI AI PLATFORM
Remember Every Moment,
Talk to AI and Get Feedback

Omi Necklace

The #1 Open Source AI necklace: Experiment with how you capture and manage conversations.

Build and test with your own Omi Dev Kit 2.

Omi App

Fully Open-Source AI wearable app: build and use reminders, meeting summaries, task suggestions and more. All in one simple app.

Github →

Join the #1 open-source AI wearable community

Build faster and better with 3900+ community members on Omi Discord

Participate in hackathons to expand the Omi platform and win prizes

Participate in hackathons to expand the Omi platform and win prizes

Get cash bounties, free Omi devices and priority access by taking part in community activities

Join our Discord → 

OMI NECKLACE + OMI APP
First & only open-source AI wearable platform

a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded
a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded
online meeting with AI Wearable, showcasing how it works and helps online meeting with AI Wearable, showcasing how it works and helps
online meeting with AI Wearable, showcasing how it works and helps online meeting with AI Wearable, showcasing how it works and helps
App for Friend AI Necklace, showing notes and topics AI Necklace recorded App for Friend AI Necklace, showing notes and topics AI Necklace recorded
App for Friend AI Necklace, showing notes and topics AI Necklace recorded App for Friend AI Necklace, showing notes and topics AI Necklace recorded

OMI NECKLACE: DEV KIT
Order your Omi Dev Kit 2 now and create your use cases

Omi 開発キット 2

無限のカスタマイズ

OMI 開発キット 2

$69.99

Omi AIネックレスで会話を音声化、文字起こし、要約。アクションリストやパーソナライズされたフィードバックを提供し、あなたの第二の脳となって考えや感情を語り合います。iOSとAndroidでご利用いただけます。

  • リアルタイムの会話の書き起こしと処理。
  • 行動項目、要約、思い出
  • Omi ペルソナと会話を活用できる何千ものコミュニティ アプリ

もっと詳しく知る

Omi Dev Kit 2: 新しいレベルのビルド

主な仕様

OMI 開発キット

OMI 開発キット 2

マイクロフォン

はい

はい

バッテリー

4日間(250mAH)

2日間(250mAH)

オンボードメモリ(携帯電話なしで動作)

いいえ

はい

スピーカー

いいえ

はい

プログラム可能なボタン

いいえ

はい

配送予定日

-

1週間

人々が言うこと

「記憶を助ける、

コミュニケーション

ビジネス/人生のパートナーと、

アイデアを捉え、解決する

聴覚チャレンジ」

ネイサン・サッズ

「このデバイスがあればいいのに

去年の夏

記録する

「会話」

クリスY.

「ADHDを治して

私を助けてくれた

整頓された。"

デビッド・ナイ

OMIネックレス:開発キット
脳を次のレベルへ

最新ニュース
フォローして最新情報をいち早く入手しましょう

最新ニュース
フォローして最新情報をいち早く入手しましょう

thought to action.

Based Hardware Inc.
81 Lafayette St, San Francisco, CA 94103
team@basedhardware.com / help@omi.me

Company

Careers

Invest

Privacy

Events

Manifesto

Compliance

Products

Omi

Wrist Band

Omi Apps

omi Dev Kit

omiGPT

Personas

Omi Glass

Resources

Apps

Bounties

Affiliate

Docs

GitHub

Help Center

Feedback

Enterprise

Ambassadors

Resellers

© 2025 Based Hardware. All rights reserved.