|

|  How to Implement CAN Bus Communication in Embedded Systems

How to Implement CAN Bus Communication in Embedded Systems

October 30, 2024

Master CAN Bus communication in embedded systems with a comprehensive guide for hardware developers, covering essential concepts and practical steps.

How to Implement CAN Bus Communication in Embedded Systems

 

Introduction to CAN Bus

  • CAN (Controller Area Network) bus is a robust communication protocol that allows microcontrollers and devices to communicate without a host computer.
  • It's widely used in automotive and industrial applications due to its high reliability and real-time capabilities.

 

CAN Bus Architecture in Embedded Systems

  • Typically consists of two wires, CAN_H (high) and CAN_L (low), that form a twisted pair for differential signaling, which minimizes electromagnetic interference.
  • Each node on the network can send and receive messages, and all nodes see each message transmitted on the network.

 

Choosing the Right Controller

  • Select a microcontroller with an integrated CAN controller or use an external CAN controller like the MCP2515 for microcontrollers that do not have it built-in.
  • Ensure the transceiver matches your application's voltage levels and compatibility requirements.

 

Hardware Setup

  • Connect the CAN transceiver to your microcontroller (e.g., TX and RX lines to the CAN_H and CAN_L lines).
  • Use a standard connector like DB9 or OBD-II for devices that require compliance with specific standards.
  • Implement termination resistors (typically 120 ohms) at each end of the CAN bus to minimize signal reflections.

 

Software Implementation

  • Initialize the CAN controller by setting up the baud rate and other CAN configuration settings.
  • Implement message framing that includes setting up identifiers and data frames. CAN 2.0A uses 11-bit IDs, while CAN 2.0B uses 29-bit IDs.
// Example for setting up CAN on an STM32F407
CAN_HandleTypeDef hcan1;

void CAN_Config(void) {
    hcan1.Instance = CAN1;
    hcan1.Init.Prescaler = 16;
    hcan1.Init.Mode = CAN_MODE_NORMAL;
    hcan1.Init.SJW = CAN_SJW_1TQ;
    hcan1.Init.BS1 = CAN_BS1_8TQ;
    hcan1.Init.BS2 = CAN_BS2_1TQ;
    hcan1.Init.TTCM = DISABLE;
    hcan1.Init.ABOM = DISABLE;
    hcan1.Init.AWUM = DISABLE;
    hcan1.Init.NART = DISABLE;
    hcan1.Init.RFLM = DISABLE;
    hcan1.Init.TXFP = DISABLE;

    if (HAL_CAN_Init(&hcan1) != HAL_OK) {
        // Initialization Error
        Error_Handler();
    }
}

 

Message Transmission and Reception

  • To send a message, configure and load a transmission mailbox with appropriate message IDs and data length.
  • Reception involves interrupt service routines or polling to capture messages from receive mailboxes.
// Transmit a CAN message
CAN_TxHeaderTypeDef TxHeader;
uint32_t TxMailbox;
uint8_t TxData[8];

TxHeader.StdId = 0x321; // Standard ID
TxHeader.ExtId = 0x01;  // Extended ID
TxHeader.RTR = CAN_RTR_DATA;
TxHeader.IDE = CAN_ID_STD;
TxHeader.DLC = 2;
TxHeader.TransmitGlobalTime = DISABLE;

TxData[0] = 0xAB;
TxData[1] = 0xCD;

if (HAL_CAN_AddTxMessage(&hcan1, &TxHeader, TxData, &TxMailbox) != HAL_OK) {
    // Transmission request Error
    Error_Handler();
}

// Receive a CAN message
CAN_RxHeaderTypeDef RxHeader;
uint8_t RxData[8];

if (HAL_CAN_GetRxMessage(&hcan1, CAN_RX_FIFO0, &RxHeader, RxData) != HAL_OK) {
    // Reception Error
    Error_Handler();
}

 

Data Handling and Filtering

  • Implement message filtering to process only those messages relevant to your application, reducing CPU overhead and improving efficiency.
  • Utilize interrupts to handle message reception promptly, especially in high-speed or time-critical applications.

 

Testing and Debugging

  • Use an oscilloscope to verify signal integrity and voltage levels on the CAN bus lines.
  • Leverage software tools like a CAN bus analyzer or toolchains (e.g., SocketCAN for Linux) for message testing and validation.

 

Conclusion

  • CAN bus implementation in embedded systems involves both hardware integration and software configuration.
  • Adhering to the guidelines on setup, configuration, and debugging ensures a robust communication setup suitable for various applications.

Pre-order Friend AI Necklace

Pre-Order Friend Dev Kit

Open-source AI wearable
Build using the power of recall

Order Now

OMI AI PLATFORM
Remember Every Moment,
Talk to AI and Get Feedback

Omi Necklace

The #1 Open Source AI necklace: Experiment with how you capture and manage conversations.

Build and test with your own Omi Dev Kit 2.

Omi App

Fully Open-Source AI wearable app: build and use reminders, meeting summaries, task suggestions and more. All in one simple app.

Github →

Join the #1 open-source AI wearable community

Build faster and better with 3900+ community members on Omi Discord

Participate in hackathons to expand the Omi platform and win prizes

Participate in hackathons to expand the Omi platform and win prizes

Get cash bounties, free Omi devices and priority access by taking part in community activities

Join our Discord → 

OMI NECKLACE + OMI APP
First & only open-source AI wearable platform

a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded
a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded a person looks into the phone with an app for AI Necklace, looking at notes Friend AI Wearable recorded
online meeting with AI Wearable, showcasing how it works and helps online meeting with AI Wearable, showcasing how it works and helps
online meeting with AI Wearable, showcasing how it works and helps online meeting with AI Wearable, showcasing how it works and helps
App for Friend AI Necklace, showing notes and topics AI Necklace recorded App for Friend AI Necklace, showing notes and topics AI Necklace recorded
App for Friend AI Necklace, showing notes and topics AI Necklace recorded App for Friend AI Necklace, showing notes and topics AI Necklace recorded

OMI NECKLACE: DEV KIT
Order your Omi Dev Kit 2 now and create your use cases

Omi 開発キット 2

無限のカスタマイズ

OMI 開発キット 2

$69.99

Omi AIネックレスで会話を音声化、文字起こし、要約。アクションリストやパーソナライズされたフィードバックを提供し、あなたの第二の脳となって考えや感情を語り合います。iOSとAndroidでご利用いただけます。

  • リアルタイムの会話の書き起こしと処理。
  • 行動項目、要約、思い出
  • Omi ペルソナと会話を活用できる何千ものコミュニティ アプリ

もっと詳しく知る

Omi Dev Kit 2: 新しいレベルのビルド

主な仕様

OMI 開発キット

OMI 開発キット 2

マイクロフォン

はい

はい

バッテリー

4日間(250mAH)

2日間(250mAH)

オンボードメモリ(携帯電話なしで動作)

いいえ

はい

スピーカー

いいえ

はい

プログラム可能なボタン

いいえ

はい

配送予定日

-

1週間

人々が言うこと

「記憶を助ける、

コミュニケーション

ビジネス/人生のパートナーと、

アイデアを捉え、解決する

聴覚チャレンジ」

ネイサン・サッズ

「このデバイスがあればいいのに

去年の夏

記録する

「会話」

クリスY.

「ADHDを治して

私を助けてくれた

整頓された。"

デビッド・ナイ

OMIネックレス:開発キット
脳を次のレベルへ

最新ニュース
フォローして最新情報をいち早く入手しましょう

最新ニュース
フォローして最新情報をいち早く入手しましょう

thought to action.

Based Hardware Inc.
81 Lafayette St, San Francisco, CA 94103
team@basedhardware.com / help@omi.me

Company

Careers

Invest

Privacy

Events

Manifesto

Compliance

Products

Omi

Wrist Band

Omi Apps

omi Dev Kit

omiGPT

Personas

Omi Glass

Resources

Apps

Bounties

Affiliate

Docs

GitHub

Help Center

Feedback

Enterprise

Ambassadors

Resellers

© 2025 Based Hardware. All rights reserved.